
CIS 4004: Advanced Page Layouts – Part 1 Page 1 © Dr. Mark Llewellyn

CIS 4004: Web Based Information Technology

Summer 2014

Advanced Page Layouts – Part 1

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cis4004/sum2014

CIS 4004: Advanced Page Layouts – Part 1 Page 2 © Dr. Mark Llewellyn

The CSS Box Model

bottom border

Content

bottom padding

bottom margin

left

margin

right

margin

top margin

top border

left

border

right

border

top padding

left

padding

right

padding

CIS 4004: Advanced Page Layouts – Part 1 Page 3 © Dr. Mark Llewellyn

• We’ve previously examined the CSS Box Model and the various

properties that apply to and affect the elements on a page. Recall

that every element is in a box whether you see the box or not.

• Now we want to use the box model to create multi-column page

layouts.

• Most Web sites use columns to maximize the amount of

information that is “above the fold”, an old newspaper term that

on the Web means “without scrolling the page.”

• Typical layouts use two or three columns but four columns is not

unusual.

Page Layouts

CIS 4004: Advanced Page Layouts – Part 1 Page 4 © Dr. Mark Llewellyn

• The traditional way of creating such multi-column layouts in

HTML and CSS has been to “float the columns with inner

divs.”

• With CSS3 however, you have some additional options to

this more traditional approach. As non-CSS3-capable

browsers fade away, you’ll be able to use the box-sizing

property instead of inner divs, and you can use the CSS3

display property to make elements behave like tables

without having to actually add tables into your HTML.

These techniques will enable you to create fluid layouts with

full-length columns.

Page Layouts

CIS 4004: Advanced Page Layouts – Part 1 Page 5 © Dr. Mark Llewellyn

• There are three commonly used options for the basic behavior

of a multi-column layout: fixed-width, fluid, and elastic.

Fixed-width layouts do not change in size as the user changes the

width of the browser window, and are typically around 900-

1100 pixels wide. The 960 figure is a very popular width for

fixed-width layouts as it fits on all modern monitors and is

readily divisible by 16, 12, 10, 8, 6, 5, 4, and 3, which makes

calculations of equal-width columns and other math come out

to nice round numbers of pixels.

The next couple of pages illustrates the behavior of a fixed-width

layout as the user changes the size of the browser window.

Basic Page Layout Concepts

CIS 4004: Advanced Page Layouts – Part 1 Page 6 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 7 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 8 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 9 © Dr. Mark Llewellyn

Fluid layouts change their width as the user adjusts the width of

the browser window. While this allows the layout to better scale

on large monitors, you give up exact control of the layout when

you use a fluid layout, as line lengths change and the relationship

of page elements can change as the layout width is adjusted.

Amazon.com has a fluid center on their pages currently, adding

white space around content elements to center them when the

columns are widened, and currently the navigation sidebar snaps

shut into a drop-down menu to create space for the content if the

layout is sized below a certain specific width.

The next couple of pages illustrates the behavior of a fluid layout

as the user changes the size of the browser window.

Basic Page Layout Concepts

CIS 4004: Advanced Page Layouts – Part 1 Page 10 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 11 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 12 © Dr. Mark Llewellyn

• With today’s browser support of CSS media queries, which allow

you to select CSS based on the user’s browser, fluid layouts are

being superceded by layouts that can fix their width at various

defined sizes based on the width of the user’s display.

• This, of course, is targeting mobile devices. Creating sites that

can adapt to the largest and smallest of screens in this fashion is

known as responsive design. We’ll look at this a bit later.

Elastic layouts are similar to fluid layouts, and not only change the

width of the layout when the browser window is resized, but also

change the size of all the content elements, producing a zooming

effect where everything gets bigger. We won’t look at these.

They’re not too popular and hard to deal with.

Basic Page Layout Concepts

CIS 4004: Advanced Page Layouts – Part 1 Page 13 © Dr. Mark Llewellyn

• In most cases, you don’t need to set the height of the structural

elements of the layout, or of any elements, for that matter.

• In general, you should avoid setting the height of elements. If

you do set an element’s height, be sure you have a good reason

for doing so, such as creating an absolutely positioned element

on the page.

• The reason that you typically want to leave an element in its

default auto height state is that it can then expand vertically

to accommodate whatever amount of content is placed in it.

• An element that expands in this way can then push down the

elements that sit below it and your layout can “breathe”
vertically as the quantity of content changes over time.

Layout Height And Layout Width

CIS 4004: Advanced Page Layouts – Part 1 Page 14 © Dr. Mark Llewellyn

• If you explicitly set an element’s height, excessive content will

either be clipped or flow out of the container, dependent on the

setting of the element’s overflow property.

• In contrast to height, the width of your layout needs to be

carefully controlled, so that the layout fits within the width of a

reasonably-size browser window, and the text lines don’t get

too long or short.

• The indiscriminate adding of padding, borders, and large

elements can cause floated elements to “slip under” one

another if their width is forced wider than the wrapper element

that sets the layouts size.

Layout Height And Layout Width

CIS 4004: Advanced Page Layouts – Part 1 Page 15 © Dr. Mark Llewellyn

• However, while you want to set the width of the columns, you

don’t want to set the width of the content element within them,

but simply let the content elements expand to fill the width of

the column – as we’ve seen before, block-level elements do

this by default.

• This effect is created with a nested div approach where the

inner div is used to allow the content to expand to the full

width of the outer div element.

• So the basic strategy is to control the layout’s width but let the

content set the layout’s height.

Layout Height And Layout Width

CIS 4004: Advanced Page Layouts – Part 1 Page 16 © Dr. Mark Llewellyn

• We’ll focus on the CSS needed to create a fluid three-column

layout. Once you understand the concepts of how its done, you

can create layouts with as many columns as you’d like.

• I’m going to use colored backgrounds for each of the columns

in the layouts we’ll step through so that you can see exactly

what’s going on with the structure of the page.

• We’ll start with a single fixed-width column centered in the
page. The markup is a wrapper to set the width of the

layout, with a container for the column (content) inside it.

• The markup is shown on the next page with the pertinent CSS

on the following page and the rendering on the page after the

CSS.

Creating Columns

CIS 4004: Advanced Page Layouts – Part 1 Page 17 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 18 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 19 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 20 © Dr. Mark Llewellyn

• By fixing the width of the wrapper and applying auto

horizontal margins to it, as shown in the CSS, the layout will

be centered in the window.

• Its height can increase freely as more content is added to it (see

next page rendering with more content added to the first

paragraph - browser window not resized from previous

version).

• The article element inside the wrapper div simply

behaves like any unwidthed block-level element and expands

horizontally to fill the wrapper.

Creating Columns

CIS 4004: Advanced Page Layouts – Part 1 Page 21 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 22 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 23 © Dr. Mark Llewellyn

• Now, let’s add a second column of navigational elements to

the left side of the page.

• As we discussed in the earlier notes on CSS Page Layouts, we

need to float the wrapper containers for the two columns in

order to get them to sit side by side.

• As you can see in the markup on the next page and the CSS on

the following page, the width of the two containers equals the

width of the wrapper (150+810=960), and floating them causes

them to sit side by side to form two columns. Each column is

as long as its content.

• It’s now quite easy to add a third column (or as many as you’d
like) in this manner.

Creating Columns

CIS 4004: Advanced Page Layouts – Part 1 Page 24 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 25 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 26 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 27 © Dr. Mark Llewellyn

• Now, let’s add the third column, which will play the role of an
aside in our three-column layout.

• Once again, we’ll need to adjust the width of the article

column to make room for the new aside content column.

Once again, the total horizontal width must equal 960 pixels,

so we’ll leave the navagational content at 150 pixels, and

make the aside content 210 pixels wide. 960 – 150 – 210 =

600 pixels for the new width of the article (main) column.

• We now have the framework in place for a three-column

layout.

• The next page illustrates the CSS for the new layout and the

following page shows the rendering.

Creating Columns

CIS 4004: Advanced Page Layouts – Part 1 Page 28 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 29 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 30 © Dr. Mark Llewellyn

• Most multi-column layouts have a full-width header and

footer, so let’s add them to our layout next.

• As before, the block-level elements will default to full-width of

their encompassing container, which is of course the effect that

we want.

• I’ll color their backgrounds differently here so it is obvious

where the various elements are being placed on the page.

Creating Columns

CIS 4004: Advanced Page Layouts – Part 1 Page 31 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 32 © Dr. Mark Llewellyn

• What happened? The header looks fine, but the footer moved

up behind the floated columns.

• Why did this happen?

• The footer follows floated elements in the markup, so it moves

up as high as it can in the layout. To fix this problem we must

make the footer clear any elements on both its left and right

sides. Note that in this case, clearing on the left only would

work equally well, as there are only floated left elements in

this case. In any case, the clear prevents the footer from

moving up above the bottom of the floated elements. The

footer will now set under whichever column is the longest.

Creating Columns

CIS 4004: Advanced Page Layouts – Part 1 Page 33 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 34 © Dr. Mark Llewellyn

• While the layout on the previous page looks pretty good, there

are two obvious issues with it.

• First the content is jammed against the edges of the columns.

• Second, the columns are only as tall as their content and the

layout would look better if they were all full height.

• The first problem is handled with padding and margins and

we’ve seen much of this before, but I want to point out a few

things to be careful about when adding them into more

complex layouts.

Fixing Some Issues

CIS 4004: Advanced Page Layouts – Part 1 Page 35 © Dr. Mark Llewellyn

• When you start to work with the content inside the columns,

the layout can become wider than its container, and the right

column will slip under the left column. There are two ways

this usually happens:

– Adding horizontal margins and padding to the columns to move their

content away from the sides, or adding margins to the columns to

create space between them (and you almost always want to do one or

both things as you style your layout) increases the width of the layout,

and causes “float-slip”, where the floated right column no longer has

room to sit next to the other, and slips down under the left column.

– Adding large images, or long sequences of characters with no spaces

such as URLs, can force the column width to exceed the layout width.

This again causes the right column to slip under the left one.

Fixing Some Issues

CIS 4004: Advanced Page Layouts – Part 1 Page 36 © Dr. Mark Llewellyn

Float slip occurs

when adding 10px

top and bottom

padding and 20px

left and right

padding to the
<article>

element (center

column)

CIS 4004: Advanced Page Layouts – Part 1 Page 37 © Dr. Mark Llewellyn

• As you may recall from our earlier discussions of the box model,

the addition of any horizontal margins, borders, or padding to a

fixed-width element makes the element wider.

• Adding width to floated columns in this way almost always

causes the “float-slip” that was just illustrated.

• There are three ways to prevent the “float-slip”:

– Reduce the stated width of the element by the total of the horizontal

margins, borders, and padding that are added to it.

– Apply the padding or margins to elements inside the container instead of to
the container itself (the nested div approach).

– Switch the way box sizing works by using the CSS3 box-sizing property,
like this: section { box-sizing: border-box; }

Fixing Some Issues

CIS 4004: Advanced Page Layouts – Part 1 Page 38 © Dr. Mark Llewellyn

• Let’s examine each of the three ways to fix the “float-slip”
problem:

Reset the width to offset the padding and borders

• Suppose that we add 20 pixels of padding to each side of a 600-

pixel-wide column. To compensate for the added padding, you

would need to narrow the width of the column by 40 pixels to 560

pixels, and then the right column would move back into position.

• The problem with this approach is that resetting the width of the

layout every time you adjust the margins or padding would get

very tedious, and is thus not an ideal situation. It is too easy to

break the layout, even accidently, when adjusting the padding and

borders.

Fixing Some Issues – Solution 1

CIS 4004: Advanced Page Layouts – Part 1 Page 39 © Dr. Mark Llewellyn

Apply padding and borders to elements inside the container

•This approach does work, as long as the elements don’t have an

explicit width, their content will simply get narrower as margins or

padding are added to them.

•As the box model states: an unwidthed element fills its parent

element horizontally, and its content is reduced in width as margins,

borders, and padding are added.

•The main problem with this approach is that a very large number of

different content elements can appear within a column. If you later

decide to change the distance of the content from the edge of the

container, you have to adjust that distance on every content element,

which is again tedious and invites errors.

Fixing Some Issues – Solution 2

CIS 4004: Advanced Page Layouts – Part 1 Page 40 © Dr. Mark Llewellyn

• Also, if you do want to style the column border, which would also

add to its width, you can’t do that by styling the individual

content elements within it.

• This is where the nested <div> approach comes to the rescue.

By adding an unwidthed <div> inside the column that encloses

all the content elements, and applying the borders and padding to

that element instead, you in effect contain the expansion of the

margins, borders and padding to within the enclosing <div>

element.

• The advantage is that now you can move all the content elements

the same distance away from the edge of the column with a single

setting on the inner <div> that is easily adjusted later if

necessary.

Fixing Some Issues – Solution 2

CIS 4004: Advanced Page Layouts – Part 1 Page 41 © Dr. Mark Llewellyn

• To see how the nested <div> approach solves the problem,

we’ll modify our running example, yet again.

• I’ve applied the technique only to the center column (the

<article> element) in order to illustrate the technique better and

styled the border of the inner <div>. The relevant CSS is shown

below:

Fixing Some Issues – Solution 2

CIS 4004: Advanced Page Layouts – Part 1 Page 42 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 43 © Dr. Mark Llewellyn

In this case the margins and padding have been

increased to 50px (instead of 20px). The browser

window has not been resized. Notice how the

inner <div> is pushed further in from the edge of

the outer <div> (the margin) and the text has

been pushed in from the border (the padding) on

the inner <div>. Notice too, that the column has

increased in height.

CIS 4004: Advanced Page Layouts – Part 1 Page 44 © Dr. Mark Llewellyn

An even more exaggerated case

when padding and margins are set

at 120 pixels.

CIS 4004: Advanced Page Layouts – Part 1 Page 45 © Dr. Mark Llewellyn

• Now that you see how the nested <div> approach works, we’ll
complete this step by adding nested <div>s to the other two

columns and remove the borders, padding, and margins on the

center column, to produce a final fixed-width layout using the

nested <div> approach.

• Notice the improvements with the added space around the text in

each of the columns.

• Also notice that I centered the text in the footer. I removed some

of the text from the footer so that this change is apparent.

• The markup for this version is available on the course webpage.

Fixing Some Issues – Solution 2

CIS 4004: Advanced Page Layouts – Part 1 Page 46 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 47 © Dr. Mark Llewellyn

• The final technique for preventing float-slip in columnar layouts

is a technique that is new with CSS3. As such, it will not be

widely supported amongst older browsers. In particular, IE7 and

older will require some JavaScript to be able to handle this

technique. For now, let’s focus on current browsers who will

support this technique.

• CSS3 has a new property that can be applied to any block-level

element in the markup. This new attribute is box-

sizing:border-box.

• We’ll simply add this property to each of the three floated

columns, and you can then add the padding, and margins to the

box without having to adjust the width of the columns to

compensate, nor do you have to add inner <div> elements.

Fixing Some Issues – Solution 3

CIS 4004: Advanced Page Layouts – Part 1 Page 48 © Dr. Mark Llewellyn

• When padding and margins are added to an element using this

property, the content is automatically squeezed down instead.

• In effect, this property causes the same behavior of the columns

as when we used the nested <div> technique, but now the

markup is much cleaner and there are no nested <div> elements

to deal with.

• The rendering of the document will look exactly the same as was

the case when the nested <div> approach was used, but the

markup will appear much cleaner.

• The markup for this scenario is also available on the course web

site, but the next page illustrates a sample of the relevant portions

of the CSS for this new technique.

Fixing Some Issues – Solution 3

CIS 4004: Advanced Page Layouts – Part 1 Page 49 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 50 © Dr. Mark Llewellyn

CIS 4004: Advanced Page Layouts – Part 1 Page 51 © Dr. Mark Llewellyn

Some additional padding illustrated on the center and right columns. Notice

that no float slip occurs and the content is squeezed into the smaller area.

